Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Large-scale population displacements arising from conflict-induced forced migration generate uncertainty and introduce several policy challenges. Addressing these concerns requires an interdisciplinary approach that integrates knowledge from both computational modeling and social sciences. We propose a generalized computational agent-based modeling framework grounded by Theory of Planned Behavior to model conflict-induced migration outflows within Ukraine during the start of that conflict in 2022. Existing migration modeling frameworks that attempt to address policy implications primarily focus on destination while leaving absent a generalized computational framework grounded by social theory focused on the conflict-induced region. We propose an agent-based framework utilizing a spatiotemporal gravity model and a Bi-threshold model over a Graph Dynamical System to update migration status of agents in conflict-induced regions at fine temporal and spatial granularity. This approach significantly outperforms previous work when examining the case of Russian invasion in Ukraine. Policy implications of the proposed framework are demonstrated by modeling the migration behavior of Ukrainian civilians attempting to flee from regions encircled by Russian forces. We also showcase the generalizability of the model by simulating a past conflict in Burundi, an alternative conflict setting. Results demonstrate the utility of the framework for assessing conflict-induced migration in varied settings as well as identifying vulnerable civilian populations.more » « less
-
Importance Adverse outcomes of COVID-19 in the pediatric population include disease and hospitalization, leading to school absenteeism. Booster vaccination for eligible individuals across all ages may promote health and school attendance. Objective To assess whether accelerating COVID-19 bivalent booster vaccination uptake across the general population would be associated with reduced pediatric hospitalizations and school absenteeism. Design, Setting, and Participants In this decision analytical model, a simulation model of COVID-19 transmission was fitted to reported incidence data from October 1, 2020, to September 30, 2022, with outcomes simulated from October 1, 2022, to March 31, 2023. The transmission model included the entire age-stratified US population, and the outcome model included children younger than 18 years. Interventions Simulated scenarios of accelerated bivalent COVID-19 booster campaigns to achieve uptake that was either one-half of or similar to the age-specific uptake observed for 2020 to 2021 seasonal influenza vaccination in the eligible population across all age groups. Main Outcomes and Measures The main outcomes were estimated hospitalizations, intensive care unit admissions, and isolation days of symptomatic infection averted among children aged 0 to 17 years and estimated days of school absenteeism averted among children aged 5 to 17 years under the accelerated bivalent booster campaign simulated scenarios. Results Among children aged 5 to 17 years, a COVID-19 bivalent booster campaign achieving age-specific coverage similar to influenza vaccination could have averted an estimated 5 448 694 (95% credible interval [CrI], 4 936 933-5 957 507) days of school absenteeism due to COVID-19 illness. In addition, the booster campaign could have prevented an estimated 10 019 (95% CrI, 8756-11 278) hospitalizations among the pediatric population aged 0 to 17 years, of which 2645 (95% CrI, 2152-3147) were estimated to require intensive care. A less ambitious booster campaign with only 50% of the age-specific uptake of influenza vaccination among eligible individuals could have averted an estimated 2 875 926 (95% CrI, 2 524 351-3 332 783) days of school absenteeism among children aged 5 to 17 years and an estimated 5791 (95% CrI, 4391-6932) hospitalizations among children aged 0 to 17 years, of which 1397 (95% CrI, 846-1948) were estimated to require intensive care. Conclusions and Relevance In this decision analytical model, increased uptake of bivalent booster vaccination among eligible age groups was associated with decreased hospitalizations and school absenteeism in the pediatric population. These findings suggest that although COVID-19 prevention strategies often focus on older populations, the benefits of booster campaigns for children may be substantial.more » « less
-
The Russian invasion of Ukraine on February 24, 2022, has displaced more than a quarter of the population. Assessing disease burdens among displaced people is instrumental in informing global public health and humanitarian aid efforts. We estimated the disease burden in Ukrainians displaced both within Ukraine and to other countries by combining a spatiotemporal model of forcible displacement with age- and gender-specific estimates of cardiovascular disease (CVD), diabetes, cancer, HIV, and tuberculosis (TB) in each of Ukraine’s 629 raions (i.e., districts). Among displaced Ukrainians as of May 13, we estimated that more than 2.63 million have CVDs, at least 615,000 have diabetes, and over 98,500 have cancer. In addition, more than 86,000 forcibly displaced individuals are living with HIV, and approximately 13,500 have TB. We estimated that the disease prevalence among refugees was lower than the national disease prevalence before the invasion. Accounting for internal displacement and healthcare facilities impacted by the conflict, we estimated that the number of people per hospital has increased by more than two-fold in some areas. As regional healthcare systems come under increasing strain, these estimates can inform the allocation of critical resources under shifting disease burdens.more » « less
-
Read, Andrew Fraser (Ed.)Two of the Coronavirus Disease 2019 (COVID-19) vaccines currently approved in the United States require 2 doses, administered 3 to 4 weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose or to continue with the recommended 2-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these 2 vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of preexisting immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% credible interval [CrI]: 7.8–29.7) infections, 0.69 (95% CrI: 0.52–0.97) hospitalizations, and 0.34 (95% CrI: 0.25–0.44) deaths per 10,000 population compared to the recommended 4-week interval between the 2 doses. Pfizer-BioNTech vaccines also averted an additional 0.60 (95% CrI: 0.37–0.89) hospitalizations and 0.32 (95% CrI: 0.23–0.45) deaths per 10,000 population in a 9-week delayed second dose (DSD) strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the 2 doses.more » « less
-
null (Ed.)Abstract Objective: Current COVID-19 guidelines recommend symptom-based screening and regular nasopharyngeal (NP) testing for healthcare personnel in high-risk settings. We sought to estimate case detection percentages with various routine NP and saliva testing frequencies. Design: Simulation modeling study. Methods: We constructed a sensitivity function based on the average infectiousness profile of symptomatic coronavirus disease 2019 (COVID-19) cases to determine the probability of being identified at the time of testing. This function was fitted to reported data on the percent positivity of symptomatic COVID-19 patients using NP testing. We then simulated a routine testing program with different NP and saliva testing frequencies to determine case detection percentages during the infectious period, as well as the presymptomatic stage. Results: Routine biweekly NP testing, once every 2 weeks, identified an average of 90.7% (SD, 0.18) of cases during the infectious period and 19.7% (SD, 0.98) during the presymptomatic stage. With a weekly NP testing frequency, the corresponding case detection percentages were 95.9% (SD, 0.18) and 32.9% (SD, 1.23), respectively. A 5-day saliva testing schedule had a similar case detection percentage as weekly NP testing during the infectious period, but identified ~10% more cases (mean, 42.5%; SD, 1.10) during the presymptomatic stage. Conclusion: Our findings highlight the utility of routine noninvasive saliva testing for frontline healthcare workers to protect vulnerable patient populations. A 5-day saliva testing schedule should be considered to help identify silent infections and prevent outbreaks in nursing homes and healthcare facilities.more » « less
-
null (Ed.)Since the emergence of coronavirus disease 2019 (COVID-19), unprecedented movement restrictions and social distancing measures have been implemented worldwide. The socioeconomic repercussions have fueled calls to lift these measures. In the absence of population-wide restrictions, isolation of infected individuals is key to curtailing transmission. However, the effectiveness of symptom-based isolation in preventing a resurgence depends on the extent of presymptomatic and asymptomatic transmission. We evaluate the contribution of presymptomatic and asymptomatic transmission based on recent individual-level data regarding infectiousness prior to symptom onset and the asymptomatic proportion among all infections. We found that the majority of incidences may be attributable to silent transmission from a combination of the presymptomatic stage and asymptomatic infections. Consequently, even if all symptomatic cases are isolated, a vast outbreak may nonetheless unfold. We further quantified the effect of isolating silent infections in addition to symptomatic cases, finding that over one-third of silent infections must be isolated to suppress a future outbreak below 1% of the population. Our results indicate that symptom-based isolation must be supplemented by rapid contact tracing and testing that identifies asymptomatic and presymptomatic cases, in order to safely lift current restrictions and minimize the risk of resurgence.more » « less
An official website of the United States government
